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Abstract
We analyse the model of topological fermions (MTF), where charged fermions
are treated as soliton solutions of the field equations. In the region far from the
sources we find plane waves solutions with the properties of electro-magnetic
waves.

PACS numbers: 05.45.Yv, 11.15.−q, 11.15.Kc, 41.20.Jb

(Some figures in this article are in colour only in the electronic version)

The intrinsic beauty of the Skyrme model and the well-known success of its application to
short-range forces and strongly coupled particles make it worthwhile to extend its philosophy
to the description of long-range forces and electrically coupled particles. The model of
topological fermions (MTF) attempts to realize such an idea [1, 2].

The MTF field, Q(x), is an SU (2) field parameterized by

Q(x) = cos α(x) + i�σ �n(x) sin α(x), (1)

where �σ are the Pauli matrices. The fields α(x) and �n(x) are functions of the Minkowski
coordinates xµ = (ct, x, y, z). The �n(x) field is a three-dimensional vector in internal
(‘colour’) space3. It is constrained by condition �n2(x) = 1 and defines a two-dimensional
sphere which further on we call S2

col.
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metric η = diag(1, −1,−1, −1) in Minkowski space.
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The Lagrangian of the MTF reads

L = −αf h̄c

4π

(
1

4
�Rµν · �Rµν + �(q0)

)
, (2)

where �Rµν is curvature tensor

�Rµν = ��µ ∧ ��ν, (3)

with the connection

��µ = 1

2i
Tr(�σ∂µQQ†) (4)

and the potential term is given by

�(q0) = 1

r4
0

(
Tr Q

2

)2m

= 1

r4
0

cos2m α(x), m = 1, 2, 3, . . . (5)

The model contains two parameters, the fine-structure constant, αf = e2
0/4πε0h̄c ≈ 1/137,

and a dimensional parameter r0.
Note that ‘the curvature term’ − 1

4
�Rµν · �Rµν is proportional to the Skyrme term, but the

so-called kinetic term does not enter the Lagrangian (2) in order to allow for electromagnetic
fields and forces [2].

Due to its Lagrangian the MTF has different properties from the Skyrme model at r → ∞
[1, 2]. In the Skyrme model the chiral field U approaches the trivial configuration, U → 1.
In the MTF the field configuration is determined by the potential minimum, i.e. α(x) = π

2 at
r → ∞. As a result the Q field becomes nontrivial,

Q(x) = i�σ �n(x) at r → ∞. (6)

The field α(x) describes the profile of a charged soliton with properties of an electron,
whereas the field �n(x) is related to the dual electromagnetic field strength [1, 2] by

∗fµν(x) = − e0

4πε0c
[∂µ�n(x) ∧ ∂ν �n(x)] · �n(x). (7)

The field strength fµν reads fµν = − 1
2εµνρσ

∗f ρσ with ε0123 = 1.
In the wave zone, where α(x) → π/2, the field �n(x) should describe the free

electromagnetic field. This can be shown by solving the equations of motion in the wave
zone and comparing them with the solutions of Maxwell’s equations.

In the wave zone the equations of motion for the field �n(x), derived in [2], are

∂µ�n∂ν{[∂µ�n(x) ∧ ∂ν �n(x)] · �n(x)} = 0. (8)

Due to the identity �n · ∂µ�n = 0 these are two independent equations only.
The aim of this paper is to solve equations (8) and to show that these solutions behave

like electromagnetic waves.
In terms of the vector field �n(x) electric E and magnetic B fields are defined by

Ei = 1
2κεijk(∂j �n ∧ ∂k�n) · �n,

(9)
c2Bi = κ(∂t �n ∧ ∂i �n) · �n,

where κ = −e0/(4πε0) in the International System of Units (SI) [3].
In the wave zone the electric and magnetic fields, propagating along the z-direction should

satisfy the constraints [4]

Ez = κ�n(∂x �n ∧ ∂y �n) · �n = 0,
(10)

c2Bz = κ(∂t �n ∧ ∂z�n) · �n = 0.
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Figure 1. The physical meaning of the angle ε(ζ(z, t)).

According to the constraint �n2 = 1, the field �n has two degrees of freedom. We describe
these two degrees of freedom in terms of two variables, ζ(xµ) and η(xµ). The constraints
(10) can be fulfilled automatically by the following dependence of the �n(x) field on ζ , η and
the Minkowski coordinates:

�n = �n(ζ(z, t), η(x, y, ζ(z, t))). (11)

Below we show that the variable ζ(z, t) is a function of z ± ct only.
In terms of ζ and η and using (11) the electric and magnetic fields (9) take the form

E = κ�n · (∂ζ �n ∧ ∂η�n)∂zζ(−∂yη, ∂xη, 0),
(12)

c2B = κ�n · (∂ζ �n ∧ ∂η�n)∂tζ(∂xη, ∂yη, 0).

Introducing the notations

cos ε = ∂xη

|∇⊥η| , sin ε = ∂yη

|∇⊥η| ,
(13)

where ∇⊥η ≡ (∂xη, ∂yη),

we get

E = κ�n · (∂ζ �n ∧ ∂η�n)∂zζ |∇⊥η|(−sin ε, cos ε, 0),
(14)

c2B = κ�n · (∂ζ �n ∧ ∂η�n)∂tζ |∇⊥η|(cos ε, sin ε, 0).

The parameter ε has the meaning of an angle between the x axis and the magnetic field
(figure 1) 4.

Using the spherical angles θ and φ in colour space

nx = sin θ cos φ, ny = sin θ sin φ, nz = cos θ (15)

we can relate the factor �n · (∂ζ �n ∧ ∂η�n) in equations (12) to the ratio of area elements between
the two sets of internal coordinates (cos θ, φ) and (η, ζ ). We will use an area preserving

4 ε together with the propagation direction defines the polarization plane as was experimentally defined in crystal
optics, ‘Fresnel definition’.
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mapping from (η, ζ ) to (cos θ, φ) and get

�n · (∂ζ �n ∧ ∂η�n) = ∂(cos θ, φ)

∂(η, ζ )
= 1. (16)

For a special solution we will show later that this condition can result in topological restrictions
on possible types of waves.

Of course such a mapping is not unique. This means that there may be different realizations
for the non-observable �n(x) field, which leads to the same physical fields E and B.

Assuming that the coordinates (η, ζ ) fulfil condition (16) one arrives at

E = κ∂zζ |∇⊥η|(−sin ε, cos ε, 0), c2B = κ∂tζ |∇⊥η|(cos ε, sin ε, 0). (17)

The field strengths obviously fulfil the general condition for electromagnetic waves [4]
E · B = 0. In order to identify the electric and magnetic fields in equation (17) with those
in electromagnetic waves they should satisfy another constraint, |E| = c|B|. According to
equation (17) this leads to the relation |∂zζ | = |∂tζ |/c. This constraint is obviously fulfilled if
ζ depends on z± = z±ct . In order to show this we have to turn to the equations of motion (8).
Substituting (11) into equations of motion (8) one arrives at two coupled nonlinear equations

∂ζ (∇⊥η)2

[
(∂zζ )2 − 1

c2
(∂t ζ )2

]
+ 2(∇⊥η)2

[
∂2
z ζ − 1

c2
∂2
t ζ

]
= 0,

�⊥η

[
(∂zζ )2 − 1

c2
(∂t ζ )2

]
= 0, (18)

�⊥η ≡ (
∂2
x + ∂2

y

)
η.

These equations can be fulfilled by the solutions of


∂2
z ζ − 1

c2
∂2
t ζ = 0,

(∂zζ )2 − 1

c2
(∂t ζ )2 = 0.

(19)

The first equation of the system (19) is a usual wave equation with two partial solutions

ζ(z, t) = ζ+(z+), or ζ(z, t) = ζ−(z−), (20)

where ζ+ and ζ− are arbitrary functions. The second equation in (19) is a nonlinear one. The
partial solutions ζ+ and ζ−, but not a superposition of them, satisfy this equation too. Thus we
have shown that the constraint |∂zζ | = |∂tζ |/c is fulfilled.

Hence, the electric and magnetic fields, given by equation (17), describe polarized
‘electromagnetic waves’ with amplitudes κ∂zζ |∇⊥η| depending on the space-time point. This
dependence is a consequence of the nonlinearity of the equations of motion.

For the special case

∂ζ (∇⊥η)2 = 0 and �⊥η = 0 (21)

the system (18) is reduced to one equation, which is the wave equation ∂2
z ζ − 1

c2 ∂
2
t ζ = 0. The

general solution for ζ is a superposition of two waves

ζ(z, t) = ζ+(z+) + ζ−(z−). (22)

Now let us discuss a special solution of equations (21)

η = a(ζ )x + b(ζ )y, a(ζ ) = d−1 cos ε(ζ ), b(ζ ) = d−1 sin ε(ζ ), (23)

where d is some constant. It results in waves, which are independent of the x and y coordinates,
like plane waves in Maxwell electrodynamics.
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Figure 2. The shaded region indicates the area in the (x, y)-plane, where circular polarized waves
exist.

Putting

ε = const and ζ = cos kz± (24)

one gets linear polarized electromagnetic waves

E = κ
k

d
sin kz±(sin ε,−cos ε, 0), cB = ∓κ

k

d
sin kz±(cos ε, sin ε, 0), (25)

where k is the wave number. Now we have to show that a mapping to the coordinates (cos θ, φ)

exists, which satisfies condition (16). Such a mapping is

cos θ = ζ, φ = −η. (26)

For circular polarized waves the situation is not so simple. In this case the polarization
angle ε is a linear function of z±, ε = z±k, and the absolute value of the electric and magnetic
fields is constant. With the choice

cos θ = η = 1

d
(x cos ε + y sin ε), φ = ζ = z±/l, ε = kz±, (27)

where d and l are arbitrary length parameters, we arrive at the required behaviour of E and B

E = κ/(dl)(−sin kz±, cos kz±, 0), cB = ±κ/(dl)(cos kz±, sin kz±, 0). (28)

From (27) follows that the region of η is restricted to

−1 � η � +1. (29)

This means that the wave exists only on a strip of width d in the (x, y)-plane parallel to the E
field (filled region in figure 2). For given field strength E0 the width d can be chosen arbitrarily
large.

Let us investigate the topological necessity for the restriction (29) in more detail. We have
a similar problem as mapping a globe onto a flat surface. In our case the globe corresponds to
S2

col, the surface is a two-dimensional area perpendicular to the electric flux lines (28). Such
an area is the helicoidal area

x sin kz± − y cos kz± = 0 at t = 0; (30)

it has the topology of R2. The electric field strength is given by the ratio of an infinitesimal
area on S2

col to the corresponding area on the helicoid (see equation (9) and [1, 2]). Requiring
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constant field strength on the helicoid the mapping has to be area preserving. It is well known
that an area preserving mapping of a globe onto a plain is only possible in a restricted region,
e.g. that defined in equation (29), −1 � cos θ = η � +1.

For linear polarized waves the electric field strength is not constant on the z, r⊥-plane, it
oscillates with z and the mapping (26) can be defined in the whole space.

Now let us discuss the connection of the equations of motion (8) with electrodynamics.
Introducing the abbreviation,

gµ = κ∂ν{[∂µ�n(x) ∧ ∂ν �n(x)] · �n(x)}
= (cρmag, g) = (c∇ · B,−∇ × E − ∂tB) (31)

the equations of motion (8) reduce to

∂µ�ngµ = 0. (32)

The quantity gµ is obviously conserved, ∂µgµ = 0, and looks formally like a magnetic current
[5]. But there is the essential difference to Dirac’s magnetic current that gµ has no external
source; it is a result of the non-Abelian nature of the colour field �n(x).

Evidently, the equations of motion (32) are fulfilled by solutions of the homogeneous
Maxwell equations, gµ = 0. But the inverse does not hold true. In the wave zone the MTF
equations of motion (32) substitute the homogeneous Maxwell equations.

According to equations (15) and (16) the magnetic current reads in terms of the parameters
η and ζ

ρmag = κ

c2
∂tζ�⊥η,

gx = κ

{
∂2η

∂x∂ζ

[
(∂zζ )2 − 1

c2
(∂t ζ )2

]
+ ∂xη

(
∂2
z ζ − 1

c2
∂2
t ζ

)}
,

(33)

gy = κ

{
∂2η

∂y∂ζ

[
(∂zζ )2 − 1

c2
(∂t ζ )2

]
+ ∂yη

(
∂2
z ζ − 1

c2
∂2
t ζ

)}
,

gz = −κ∂zζ�⊥η.

If there is no superposition of two waves ζ+ and ζ− , the x and y components of the magnetic
current vanish, gx = gy = 0. This condition is fulfilled for linear and circular polarized
waves, (25) and (28), respectively. In turn, if condition (23) is fulfilled, ρmag and gz are also
vanishing. The solution for linear polarized waves agrees with this condition at any point of
physical space. But for circular polarized waves it is not so at the boundary of the strip of
figure 2 and ρmag and gz appear at this region.

In summary, we discuss solutions of the model of topological fermions in the wave zone.
The equations of motion are nonlinear field equations. We find plane wave solutions of these
equations with the properties of electromagnetic waves. We describe our solutions for linear
and circular polarized waves and give topological reasons, why it is not possible to define
circular polarized waves with a modulus of the electric and magnetic field strength constant
everywhere in space time.
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